By N. M. Burunova, A. V. Lebedev, R. M. Fedorova

ISBN-10: 0080092446

ISBN-13: 9780080092447

A consultant to Mathematical Tables is a complement to the advisor to Mathematical Tables released by means of the U.S.S.R. Academy of Sciences in 1956. The tables comprise info on matters resembling powers, rational and algebraic services, and trigonometric capabilities, in addition to logarithms and polynomials and Legendre features. An index directory all features integrated in either the consultant and the complement is included.

Comprised of 15 chapters, this complement first describes mathematical tables within the following order: the accuracy of the desk (that is, the variety of decimal areas or major figures); the bounds of version of the argument and the period of the desk; and the serial variety of the e-book or magazine within the reference fabric. the second one half provides the writer, identify, publishing apartment, and date and position of booklet for books, and the identify of the magazine, yr of e-book, sequence, quantity and quantity, web page and writer and name of the thing brought up for journals. subject matters diversity from exponential and hyperbolic services to factorials, Euler integrals, and comparable services. Sums and amounts regarding finite ameliorations also are tabulated.

This booklet might be of curiosity to mathematicians and arithmetic scholars.

**Read Online or Download A Guide to Mathematical Tables. Supplement No. 1 PDF**

**Similar nonfiction_12 books**

- Flora Slovenska. IV/1. Sapindales -- Cornales.
- Building an Ecologically Sustainable Society: Book of Abstracts
- Marx-Engels Collected Works,Volume 33 - Marx: 1861-1863
- Problem-Solving Tools and Tips for School Leaders

**Extra resources for A Guide to Mathematical Tables. Supplement No. 1**

**Example text**

7 dec. 3 = 0(0,0001)0,1 ^ = 0,1(0,0005)3,15; 3(0,01)10(0,1) 20(1)100 Ar sh \rx 3 dec. a: = 0(0,01)1 Ar sh 3 dec. [8] [8] ~ [7] Vmc 3 = 0(0,01)1 [7] Arshl/lOOas 3 dec. 3 = 0(0,01)1 [7] Ar ch x 7 dec. 3 = 1(0,0005)3,15; 3(0,01)10(0,1) 20(1)100 [8] Ar th x 20 9 7 3 dec. dec. dec. dec. 3 = A-10-\ A: = 1(1) 9. X = 1(1)6 3=0(0,0001)0,1 3 = 0,1(0,0005)1; 0,9980(0,0001)1 x = 0 (0,02) 0,8 (0,01) 0,94 (0,001) 1 [18] [81 [8] [7] Ar cth x 7 dec. 3 = 1(0,0001)1,0020; 1(0,0005)3,15; \ 3(0,01)10(0,1)20 / [81 Chapter 4 LOGARITHMS* COMMON LOGARITHMS AND ANTILOGARITHMS Logarithms of integers 15 9 7 7 7 5 5 5 4 4 x = 1(1)999; 99900(1)99999 x = 1(1)10 a; = 1(1) 150 x = 1 (1) 20 x = 10000 (1) 11009 x = 1(1)10000 x = 1(1)999 x = 1000(1)10009 x = 1(1)100 x = 100 (1)999 dec.

3=0(0,01)0,5(0,02)2(0,05)2,5 [17] 6 dec. 3 = 1(1)10 [25} The beta function 37 THE BETA FUNCTION 1 B (p, q) = \ ocp~l (1 — o 5-6 dec. xy~xdx p = 0(I)2(l)5. g=0(l)2(ij5 The i n c o m p l e t e b e t a [25] function where B*(/>,9) = ^p-*(l — ty-Ht. 0 7 dec. /> = l ( l ) . . u p t o v a l u e s f o r which /*<10-*. 9 = 1(1)150. x = 0,01 (0,01) 0,5 [19] [ 2Ba (2p + 2, 2q + 2) - «,*+* (1 - aQ'+'B, (p + 1, g + 1) r 1 L 2Bi (2p + 2, 2# + 2) J 2 dec. x = 0,95; 0,99. p = 0 ( i ) 2. 9=|(4-)10 [30j Zeros of the incomplete beta function Ex(P,Q — P + !

The real and imaginary parts of the first three pairs of prime zeros for a = 0 , 2 5 ; 0,5; 0,75 4 d e c . V a l u e s of * are given f o r w h i c h the double zero lies at the point x = (2n + ~)n. n = 0(l) 10 15] Chapter 7 PROBABILITY INTEGRALS AND RELATED FUNCTIONS* FUNCTIONS OF THE DISTRIBUTION OF PROBABILITY AND RELATED FUNCTIONS V n 15 d e c . 8 fig. 6 dec. (0,0001) 1(0,001) 5,6 ( ve x — 4 (0,01) 10 s = 0(0,01) 0,2 (0,05) 1(0,1) 3 ) 5,946 (26J1351 1261(351 (181 *W-7W*" f 15 d e c . 10 d e c .

### A Guide to Mathematical Tables. Supplement No. 1 by N. M. Burunova, A. V. Lebedev, R. M. Fedorova

by Jeff

4.4